Singular Value Decomposition and Its Application to Autoregressive Parametric Spectral Estimation Singular Value Decomposition and Its Application to Autoregressive Parametric Spectral Estimation

نویسنده

  • Poul M. Rands Jensen
چکیده

During recent years much interest has been given to the application of Singular Value Decomposition in association with extended{order and overdetermined evaluation in the nite parametric spectral estimation domain. Such approaches have been shown to perform superior to other methods for discontinuous frequency signal, e.g. the harmonic retrieval problem. In this report a similar approach is applied to wide{banded AR processes. It is found that the so{called extraneous poles of the lower rank solution spoil the spectral estimate. A new approach, the direction weighted total least squares solution, which enforces the extraneous poles to be located at the origin while maintaining the good properties of the aforementioned approaches, is therefore introduced. Computer simulationexperiments clearly indicate that this approach is superior to existing overdetermined and extended{ or parsimonic order methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

Analysis of Mouse Periodic Gene Expression Data Based on Singular Value Decomposition and Autoregressive Modeling

Each D A microarray experiment generates a large amount of gene expression profiles and it remains a challenge for biologists to robustly identify periodic gene expression profiles with certain noise level in the data. In this paper, we propose a new scheme with noise filtering technique to analyze the periodicity of gene expression base on singular value decomposition (SVD), singular spectrum ...

متن کامل

Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multiwavelets

A new time-varying autoregressive (TVAR) modelling approach is proposed for nonstationary signal processing and analysis, with application to EEG data modelling and power spectral estimation. In the new parametric modelling framework, the time-dependent coefficients of the TVAR model are represented using a novel multi-wavelet decomposition scheme. The timevarying modelling problem is then redu...

متن کامل

Spectral analysis of microarray gene expression time series data of Plasmodium falciparum

We propose a new strategy to analyse the periodicity of gene expression profiles using Singular Spectrum Analysis (SSA) and Autoregressive (AR) model based spectral estimation. By combining the advantages of SSA and AR modelling, more periodic genes are extracted in the Plasmodium falciparum data set, compared with the classical Fourier analysis technique. We are able to identify more gene targ...

متن کامل

Singular Value Decomposition-Based ARMA Model Parameter Estimation of Non-Gaussian Processes

Autoregressive moving average (ARMA) modeling has been used in many fields. This paper presents an approach to time series analysis of a general ARMA model parameters estimation. The proposed technique is based on the singular value decomposition (SVD) of a covariance matrix of a third order cumulants from only the output sequence. The observed data sequence is corrupted by additive Gaussian no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991